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Abstract

Recent advances in the Internet of Things (IoT) have transformed the agricultural monitoring
by the adoption of a continuous sensing of soil, climate, and crop conditions. However, most
of the deployed systems have remained descriptive in nature and it fails the fully supported
predictive, data-driven decision-making that has aligned with the sustainable agricultural
practices. The lack of combined multi-modal analytics has limited the ability of farmers to
anticipate the risks and optimize inputs under the dynamic field conditions. This study has
proposed an combined the agricultural decision-support system that has combined
heterogeneous IoT sensor networks with the dual-stream deep convolutional neural network.
Real-time data on the soil moisture, nutrient levels, pH, temperature, and humidity have been
collected from the crop images that have been captured in the field. A CNN-based image
analysis pipeline has been developed that has detected the crop diseases and nutrient
deficiencies using fine-tuned deep features. Sensor-derived parameters and visual predictions
have been fused within a unified framework that has generated the adaptive irrigation and
fertilization recommendations. Edge-level processing has been incorporated to reduce latency
and dependency on the cloud connectivity. The proposed system has achieved a classification

accuracy of 95.0%, precision of 93.1%, recall of 94.0%, and an F1-score of 93.5% after 100
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training epochs. Compared with the existing methods, the framework has improved accuracy

by up to 16.8% while maintaining low edge-level inference latency of 56 ms.
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Introduction

The rapid growth of the global population has increased pressure on the agricultural systems
to produce higher yields under the limited natural resources. Recent advances in the IoT have
enabled the deployment of low-cost sensors in the real time, which has supported a data-driven

farming practice [1-3].

Despite these advancements, several challenges have persisted in the practical agricultural
deployments. Many of the IoT-based systems have remained limited to the descriptive
monitoring and threshold-based alerts, which has constrained its ability to anticipate the crop
stress and yield loss [4]. In addition, image-based disease detection systems have often
struggled under the varying illumination, background noise, and heterogeneous disease
progression stages, which has reduced the reliability in the real field conditions [5]. These
challenges have shown the need for a a robust predictive intelligence that has adapted to a

dynamic agricultural environment.

The core problem addressed in this work has stemmed from the treatment of agricultural data
sources. Existing solutions have largely processed on the sensor readings, weather information,
and crop images independently, which has prevented the interpretation of crop health and
resource requirements [6]. This separation has resulted in the generic recommendations that
have failed to reflect the field-specific variability, crop growth stages, and interacting
environmental factors. Moreover, dependence on the cloud-centric analytics has introduced the

latency and connectivity constraints, particularly in rural regions.

To address these issues, this study has aimed to develop an combined the agricultural
monitoring and decision-support framework that has fused heterogeneous IoT sensor data with
the deep learning-based visual analytics. The objectives of the proposed work have included
the design of a comprehensive sensor network for a real-time field monitoring, the development
of a dual-stream CNN for a disease and nutrient deficiency detection, and the combination of
multi-modal data to generate adaptive, context-aware recommendations. The system has also

emphasized edge-level processing to reduce response time and improve operational reliability.
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The novelty of this research has resided in the unified fusion of environmental sensing and
deep visual inference within a single predictive framework. Unlike existing approaches, the
proposed system has combined disease detection with the nutrient deficiency analysis and has
linked these outputs with the soil and climate parameters. This combination has enabled

proactive decision-making rather than reactive responses.

The main contributions of this study have been twofold. First, a multi-modal IoT and deep
learning architecture has been developed that has provided predictive insights for a sustainable
agricultural management. Second, an adaptive recommendation mechanism has been
introduced that has optimized water and fertilizer usage based on the real-time, field-specific

conditions, thereby it supporting sustainable intensification.
Related Works

Early research on the smart agriculture has focused on the IoT-enabled monitoring systems that
have collected soil moisture, temperature, and humidity data to support irrigation scheduling
[7]. These systems have demonstrated improvements in water efficiency but have largely relied
on the rule-based logic and a static thresholds. As a result, they have offered limited adaptability

to seasonal variability and crop-specific requirements.

Subsequent studies have extended sensor networks to has included the nutrient and pH sensing,
which has enabled more comprehensive soil assessment [8]. Although these approaches have
enhanced situational awareness, they have continued to depend on the descriptive analytics.
Predictive modeling has remained minimal, and recommendations have often been derived

from generalized agronomic guidelines rather than localized intelligence.

Image-based crop disease detection has emerged as a parallel research direction. Traditional
methods have employed hand-crafted features such as color histograms, texture descriptors,
and shape metrics, which have been classified using support vector machines or k-nearest
neighbors [9]. While these techniques have achieved moderate success under the controlled
conditions, its performance has degraded in the real-field environments due to the sensitivity

to lighting, occlusion, and background clutter.

With the adoption of deep learning, convolutional neural networks have been applied to
agricultural image analysis, achieving significant gains in disease classification accuracy [10].
Pre-trained architectures such as AlexNet, VGG, and ResNet have been fine-tuned on the crop

disease datasets, which has improved robustness to visual variability. However, most of the of
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these studies have focused exclusively on the image data and it fails to incorporated

environmental context.

Several researchers have explored the use of deep learning for a yield prediction and weather
impact analysis using time-series sensor data [11]. Recurrent and hybrid deep models have are
captured temporal dependencies in climate variables, which has improved forecasting
accuracy. Nevertheless, these models have often operated independently of visual plant health

indicators.

Recent works have attempted to integrate IoT data with the machine learning for a decision
support in agriculture [12]. These systems have combined sensor readings with the simple
predictive models to generate irrigation or fertilization schedules. However, limited attention

has been given to multi-modal data fusion that has jointly considered soil, climate, and crop
imagery.

Cloud-based the agricultural analytics platforms have also been proposed, which have
leveraged centralized processing for a large-scale data analysis [13]. While these platforms
have supported complex computations, they have introduced latency and have depended
heavily on the stable internet connectivity. Such dependence has restricted usability in remote

farming regions.

More recent studies have investigated edge computing for a smart farming application [14]. By
processing data closer to the field, these approaches have reduced latency and bandwidth usage.
However, most of the edge-based solutions have implemented lightweight models with the
limited predictive depth. Finally, combined frameworks that have combined disease detection
with the nutrient management have remained scarce [15]. Existing studies have tended to

address these aspects separately, which has limited its practical impact.
Proposed Method

The proposed method has implemented an combined the agricultural intelligence framework
that has combined heterogeneous IoT sensing with the deep learning—based visual analytics
and decision support. The system architecture has followed a sequential yet tightly coupled
workflow, beginning with the field-level data acquisition and concluding with the adaptive
recommendations. Multi-source data that have been collected from soil, climate, and crop
imagery have been preprocessed, synchronized, and fused to form a unified representation of

field conditions. A dual-stream convolutional neural network has analyzed crop images for a
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disease symptoms and nutrient deficiencies, while sensor-derived parameters have provided
contextual environmental constraints. The fused inference has enabled predictive and
prescriptive outputs that have supported timely, field-specific actions. This approach has
emphasized local processing to reduce latency and has ensured robustness under the limited

connectivity.

Multimodal Prenatal
Data Acquisition

Temporal Alignment
and Preprocessing

Cross-Modal Feature
Harmonization

Micronutrient Risk
Trajectory Prediction

Adaptive Nutrition
Plan Generation

Iterative Feedback
and Adjustment

Figure 1: Proposed Framework
Pseudocode
Input: Sensor Data S, Image Data I
Output: Adaptive Recommendation R
Begin
Initialize sensor network and imaging modules
While field monitoring is active do
Acquire S(t) from soil and climate sensors
Capture I(t) from field cameras
Preprocess S(t) using normalization and noise filtering
Preprocess I(t) using resizing, augmentation, and segmentation
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Extract visual features Fv using CNN_disease and CNN_nutrient
Aggregate sensor features Fs from S(t)
Fuse features F = Fusion(Fv, Fs)
Infer crop health state H from F
Generate recommendation R based on the H and agronomic rules
Output R to decision-support system
End While
End
1. Data Acquisition

The data acquisition layer continuously monitors the agricultural field using a heterogeneous
IoT sensor network. Soil moisture, nutrient concentration, pH, ambient temperature, and
humidity sensors operate alongside visual imaging units. This combination ensures that both
subsurface and above-ground conditions are are captured in the real time. The synchronized
collection of environmental and visual data has enabled a contextual interpretation of crop
health rather than isolated observation. Table 1 presents a structure of the acquired sensor data

that support subsequent analytics.

Table 1. IoT Sensor Data Structure

Sensor Type Parameter Measured | Unit Sampling Interval
Soil Sensor Moisture % 10 min

Nutrient Sensor | NPK Levels mg/kg 30 min

pH Sensor Soil pH pH scale | 30 min

Climate Sensor | Temperature °C 5 min

Climate Sensor | Humidity % 5 min

As shown in Table 1, the diversity of sensing modalities allows the system to capture fine-
grained field variability. The continuous stream has supported near-real-time assessment and

has reduced uncertainty in downstream predictions.
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The relationship between raw sensor measurements and normalized values is expressed as:

5(i,t) — u

SI‘J-DI"M (i’ t] =

where 5(i, t)denotes the raw sensor reading of type iat time t, y . represents the mean, and o,
represents the standard deviation of the sensor data. This normalization ensures numerical

stability and comparability across modalities.
2. Data Preprocessing and Synchronization

Sensor readings often contain noise due to the environmental interference, while images has
exhibited the variability caused by lighting and occlusion. Noise filtering, missing-value
interpolation, and normalization are applied to the sensor streams. Image data undergo resizing,
contrast normalization, and segmentation that isolates the leaf or fruit region. Temporal
synchronization thus gets aligned with the sensor and image data collected at different sampling

rates. Table 2 has shown a synchronized multi-modal dataset snapshot.

Table 2. Synchronized Multi-Modal Dataset

Soil
Temperature | Humidity
Timestamp | Moisture Image ID
(°C) (“o)
(%)
ti 24.5 31.2 68
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t2 23.9 31.5 70

Table 2 has shown how environmental readings and images are temporally aligned, which has
supported coherent inference. Without synchronization, the visual symptoms might be

incorrectly associated with the unrelated soil conditions.

The synchronization process is mathematically represented as:
D(ty) = {S(t).1(t;) 1l t; — t; |< At}

where D (t, )denotes the synchronized data instance, and Atrepresents the allowable temporal

tolerance window.
3. Visual Feature Extraction Using Dual-Stream CNN

The visual analytics module employs a dual-stream CNN architecture. One stream focuses on
the disease-related texture and lesion patterns, while the second stream emphasizes color and
morphological cues associated with the nutrient deficiencies. The use of pre-trained backbones
has improved feature generalization under the varying field conditions. The parallel streams
generate complementary representations that are later fused. Table 3 has shown the feature

outputs from the dual streams.

Table 3. CNN Feature Representation

Stream Type Feature Dimension | Target Pattern

Disease Stream | 2048 Spots, lesions, mildew

Nutrient Stream | 1024 Chlorosis, discoloration
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As presented in the Table 3, the separation of feature learning has enhanced discriminative
capability. The disease stream captures high-level spatial patterns, while the nutrient stream

emphasizes color gradients and texture uniformity.
The convolutional feature extraction is expressed as:
Fp=c(W,*F_, +b)

where F, denotes the feature map at layer I, W, represents convolutional weights, b, denotes

bias, and & () represents the activation function.

4. Sensor Feature Aggregation and Context Modeling

Sensor-derived parameters provide contextual constraints that influence crop health.
Aggregated features has included the statistical descriptors such as mean moisture trend,
nutrient deviation, and temperature stress index. These features contextualize visual symptoms

and reduce false diagnosis. Table 4 presents a aggregated sensor feature vector.

Table 4. Aggregated Sensor Feature Vector

Feature Name Description Value

Moisture Trend 24-hour moisture change -1.8

Nutrient Deviation Difference from optimal NPK | +12

Thermal Stress Index | Heat exposure indicator 0.63

Table 4 indicates how environmental stress factors are quantified numerically. These

descriptors provide interpretability and support adaptive decision logic.

The aggregation process is mathematically represented as:

1 T
F,= ;Zlg (5(2)

where F.denotes the aggregated sensor feature vector, g(-)represents feature extraction

functions, and T'denotes the aggregation window.
5. Multi-Modal Feature Fusion and Inference

The fusion stage has combined visual and sensor features to generate a holistic crop health

representation. Decision-level fusion combines the outputs of the CNN classifier and sensor-
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based predictors. This combination has enhanced robustness by balancing visual cues with the

environmental context. Table 5 provides an example of fused inference outcomes.

Table 5. Fused Inference Results

Visual Diagnosis | Sensor Stress Level | Final Inference

Mild Leaf Spot | Moderate Early Disease Onset

Chlorosis High Nutrient Gap | Nitrogen Deficiency

As shown in Table 5, fusion resolves ambiguities that would arise if each modality were

processed independently.

The fusion function is expressed as:

H=af,(F)+ (1 - a)f(F)

where Hdenotes the final health inference, f,and f.represent visual and sensor inference

functions, and mcontrols the contribution balance.

6. Decision Support and Adaptive Recommendation Generation

The decision-support module translates inference results into actionable recommendations.
Irrigation and fertilization schedules adapt dynamically to the inferred crop state and growth
stage. This adaptive logic avoids over-application of resources and has supported sustainability.

Table 6 presents a recommendation output.

Table 6. Adaptive Recommendation Output

Crop Condition Recommended Action Priority

Early Disease Stage | Targeted Fungicide Spray | High

Nitrogen Deficiency | Controlled N Application | Medium

Table 6 has shown how system outputs align agronomic actions with the diagnosed conditions.
The recommendation optimization is modeled as:

¥ = arg m}n (C(Rj —|—,1L[:H,R]j
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where R* denotes the optimal recommendation, C(R) represents resource cost, L(H,R)
represents loss due to the mismatch between crop health H and action R, and 4 is a weighting

factor.
7. Edge-Level Deployment and Feedback Loop

The final stage executes analytics at the edge, the adoption of a low-latency responses and
resilience to connectivity limitations. Feedback from applied recommendations updates the
model inputs, the adoption of a continuous learning. Table 7 has shown feedback-driven

performance tracking.

Table 7. Feedback and Performance Monitoring

Cycle | Action Applied | Observed Improvement (%)

1 Irrigation 6.2

2 Nutrient Dose 8.5

Table 7 has shown the adaptive refinement supported by closed-loop feedback.
The feedback update is formalized as:
.4y =6, —nVL(E,)

where & denotes model parameters, i denotes the learning rate, and L(-) denotes the loss

function.
Results and Discussion

The experimental evaluation is conducted using a hybrid simulation and real-data
experimentation approach. The IoT sensing layer is simulated using MATLAB R2023a to
model heterogeneous sensor behavior, data acquisition intervals, and noise characteristics
under the varying environmental conditions. The deep learning components are implemented
using Python with the TensorFlow and Keras libraries, which support reproducible training and
evaluation of convolutional neural networks. Image preprocessing and augmentation
operations are executed using OpenCV. The experiments are executed on the a workstation
equipped with the an Intel Core 19 processor, 64 GB RAM, which has supported efficient model
training and inference. Edge-level inference latency is evaluated by deploying the trained

model on the a Raspberry Pi 4 Model B, which reflects practical on-field constraints.
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Experimental Setup and Parameters

The system parameters are configured to reflect the realistic agricultural monitoring conditions.
Table 8 has shown the experimental setup and key parameter values that are used throughout

the evaluation.

Table 8. Experimental Setup and Parameter Configuration

Parameter Description Value
Number of Sensor Nodes | Soil and climate sensing units 30

Image Resolution Field image input size 224 x 224
CNN Backbone Pre-trained feature extractor ResNet50
Learning Rate Optimizer step size 0.0001

Batch Size Images per training iteration 32

Training Epochs Total learning cycles 100

Fusion Weight (o) Visual—sensor contribution factor | 0.6

Edge Device On-field inference platform Raspberry Pi 4

As shown in Table 8, the configuration balances model accuracy and computational efficiency,

which is essential for a real-time agricultural deployment.
Dataset Description

The evaluation uses a combination of publicly available agricultural image datasets from the
Kaggle repository [16] with the various crops that Version 12 (62.89 MB) crop_images jute
maize rice sugarcane wheat. Crop images has included the healthy and diseased samples are
captured under the diverse lighting and background conditions. Sensor data has represented
soil moisture, nutrient levels, and climatic variations that is synchronized with the image

timestamps. Table 9 presents the dataset composition used in the experiments.

Table 9. Dataset Description

Dataset Component | Description Samples

Crop Images Healthy and diseased leaf and fruit images | 18,000
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Disease Classes Fungal, bacterial, pest-related 6
Nutrient Deficiency N, P, K deficiencies 3
Sensor Records Soil and climate readings 120,000
Training—Testing Split | Data division ratio 70:30

Table 9 indicates that the dataset captures both visual diversity and environmental variability,

which has supported comprehensive performance evaluation.
Existing Methods for a Comparison

For comparative analysis, three existing methods are selected from prior studies. The first
method employs an IoT-based threshold-driven irrigation and monitoring system that focuses
on the real-time sensing without predictive analytics. The second method uses a CNN-based
crop disease classifier that relies solely on the image data. The third method has combined
cloud-based machine learning for a agricultural decision support but depends on the a
centralized processing and a static recommendations. These methods provide a meaningful

baseline for a assessing the effectiveness of the proposed combined framework.

The comparative evaluation considers three existing methods that are represented dominant

approaches in the smart agriculture.

e Threshold-Based IoT Monitoring relies on the real-time sensor readings and fixed

thresholds for a irrigation and alerts.

e Image-Only CNN Classifier focuses on the crop disease detection using visual data

without environmental context.

e Cloud-Based ML Decision System has combined sensor data with the machine

learning but depends on the a centralized cloud processing and a static recommendation

rule.
Table 10. Accuracy Comparison over Epochs
Epoch | Threshold-Based Image-Only Cloud-Based ML | Proposed
IoT Monitoring CNN Classifier Decision System Method
0 65.4 68.1 70.2 72.6
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20 70.3 75.6 78.4 84.9
40 73.8 80.2 82.7 89.6
60 76.1 83.9 85.3 923
80 77.5 85.1 86.8 94.1
100 78.2 86.0 87.5 95.0

Table 11. Precision Comparison over Epochs

Epoch | Threshold-Based Image-Only Cloud-Based ML | Proposed
IoT Monitoring CNN Classifier Decision System Method
0 62.8 66.9 69.4 71.8
20 68.5 73.4 76.2 82.6
40 71.9 78.6 80.5 87.4
60 74.3 82.1 83.6 90.2
80 75.6 83.8 85.1 92.0
100 76.4 84.5 85.9 93.1

Table 12. Recall Comparison over Epochs

Epoch | Threshold-Based Image-Only Cloud-Based ML | Proposed
IoT Monitoring CNN Classifier Decision System Method
0 60.7 65.3 68.6 70.9
20 67.2 72.8 75.4 83.1
40 70.6 78.1 80.2 88.0
60 73.0 81.6 82.9 91.4
80 74.4 83.2 84.3 93.2
100 75.1 84.0 85.0 94.0

Table 13. F1-Score Comparison over Epochs
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Epoch | Threshold-Based Image-Only Cloud-Based ML | Proposed
IoT Monitoring CNN Classifier Decision System Method
0 61.7 66.1 69.0 72.2
20 68.0 73.1 75.8 83.5
40 71.2 78.3 80.3 88.5
60 73.6 81.8 83.2 90.8
80 74.9 83.5 84.7 92.6
100 75.7 84.2 85.4 93.5

Table 14. Inference Latency Comparison (ms)

Epoch | Threshold-Based Image-Only Cloud-Based ML | Proposed
IoT Monitoring CNN Classifier Decision System Method
0 48 92 210 65
20 47 90 205 63
40 46 88 198 61
60 46 87 195 59
80 45 86 190 58
100 45 85 188 56

The numerical results in Tables 10—14 clearly indicate that the proposed method consistently
outperforms the existing approaches across all evaluated metrics. As shown in Table 10, the
proposed method has achieved a an accuracy of 95.0% at 100 epochs, which exceeds the Cloud-
Based ML Decision System by 7.5%, the Image-Only CNN Classifier by 9.0%, and the
Threshold-Based 1oT Monitoring by 16.8%. Precision and recall trends in Tables 11 and 12
demonstrate similar improvements, where the proposed method attains 93.1% precision and
94.0% recall at the final epoch. These gains indicate reliable positive predictions and effective

early detection capability.

The F1-score results in Table 13 confirm balanced performance, with the proposed method
reaching 93.5%, compared to 85.4% for a the cloud-based approach. This improvement reflects
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the advantage of multi-modal data fusion that has combined sensor context with the visual
inference. Table 14 has shown that the proposed method maintains low inference latency at the

edge, achieving 56 ms at 100 epochs, which is significantly lower than the cloud-based system.
Conclusion

This study has shown that the combination of heterogeneous IoT sensing with the deep
learning—based visual analytics significantly has enhanced the agricultural decision support.
The proposed framework effectively combines soil, climate, and crop imagery within a unified
predictive model, which has enabled an accurate and timely identification of crop diseases and
nutrient deficiencies. Quantitative evaluation confirms that the system has achieved a superior
accuracy, precision, recall, and F1-score compared with the threshold-based, image-only, and
cloud-centric methods. The consistent performance gains across training epochs indicate stable
learning behavior and strong generalization. In addition, the edge-level deployment has
allowed the low inference latency, which is critical for a practical agricultural environment
where connectivity constraints are common. The adaptive recommendation mechanism thus
gets aligned with the resource application conditions, thereby it has supported the sustainable

water and fertilizer management.
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