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Abstract 

Recent advances in the Internet of Things (IoT) have transformed the agricultural monitoring 

by the adoption of a continuous sensing of soil, climate, and crop conditions. However, most 

of the deployed systems have remained descriptive in nature and it fails the fully supported 

predictive, data-driven decision-making that has aligned with the sustainable agricultural 

practices. The lack of combined multi-modal analytics has limited the ability of farmers to 

anticipate the risks and optimize inputs under the dynamic field conditions. This study has 

proposed an combined the agricultural decision-support system that has combined 

heterogeneous IoT sensor networks with the dual-stream deep convolutional neural network. 

Real-time data on the soil moisture, nutrient levels, pH, temperature, and humidity have been 

collected from the crop images that have been captured in the field. A CNN-based image 

analysis pipeline has been developed that has detected the crop diseases and nutrient 

deficiencies using fine-tuned deep features. Sensor-derived parameters and visual predictions 

have been fused within a unified framework that has generated the adaptive irrigation and 

fertilization recommendations. Edge-level processing has been incorporated to reduce latency 

and dependency on the cloud connectivity. The proposed system has achieved a classification 

accuracy of 95.0%, precision of 93.1%, recall of 94.0%, and an F1-score of 93.5% after 100 
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training epochs. Compared with the existing methods, the framework has improved accuracy 

by up to 16.8% while maintaining low edge-level inference latency of 56 ms.  

Keywords: 

Smart agriculture, IoT sensors, deep learning, crop disease detection, decision support systems 

Introduction 

The rapid growth of the global population has increased pressure on the agricultural systems 

to produce higher yields under the limited natural resources. Recent advances in the IoT have 

enabled the deployment of low-cost sensors in the real time, which has supported a data-driven 

farming practice [1–3].  

Despite these advancements, several challenges have persisted in the practical agricultural 

deployments. Many of the IoT-based systems have remained limited to the descriptive 

monitoring and threshold-based alerts, which has constrained its ability to anticipate the crop 

stress and yield loss [4]. In addition, image-based disease detection systems have often 

struggled under the varying illumination, background noise, and heterogeneous disease 

progression stages, which has reduced the reliability in the real field conditions [5]. These 

challenges have shown the need for a a robust predictive intelligence that has adapted to a 

dynamic agricultural environment. 

The core problem addressed in this work has stemmed from the treatment of agricultural data 

sources. Existing solutions have largely processed on the sensor readings, weather information, 

and crop images independently, which has prevented the interpretation of crop health and 

resource requirements [6]. This separation has resulted in the generic recommendations that 

have failed to reflect the field-specific variability, crop growth stages, and interacting 

environmental factors. Moreover, dependence on the cloud-centric analytics has introduced the 

latency and connectivity constraints, particularly in rural regions. 

To address these issues, this study has aimed to develop an combined the agricultural 

monitoring and decision-support framework that has fused heterogeneous IoT sensor data with 

the deep learning-based visual analytics. The objectives of the proposed work have included 

the design of a comprehensive sensor network for a real-time field monitoring, the development 

of a dual-stream CNN for a disease and nutrient deficiency detection, and the combination of 

multi-modal data to generate adaptive, context-aware recommendations. The system has also 

emphasized edge-level processing to reduce response time and improve operational reliability. 
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The novelty of this research has resided in the unified fusion of environmental sensing and 

deep visual inference within a single predictive framework. Unlike existing approaches, the 

proposed system has combined disease detection with the nutrient deficiency analysis and has 

linked these outputs with the soil and climate parameters. This combination has enabled 

proactive decision-making rather than reactive responses. 

The main contributions of this study have been twofold. First, a multi-modal IoT and deep 

learning architecture has been developed that has provided predictive insights for a sustainable 

agricultural management. Second, an adaptive recommendation mechanism has been 

introduced that has optimized water and fertilizer usage based on the real-time, field-specific 

conditions, thereby it supporting sustainable intensification. 

Related Works 

Early research on the smart agriculture has focused on the IoT-enabled monitoring systems that 

have collected soil moisture, temperature, and humidity data to support irrigation scheduling 

[7]. These systems have demonstrated improvements in water efficiency but have largely relied 

on the rule-based logic and a static thresholds. As a result, they have offered limited adaptability 

to seasonal variability and crop-specific requirements. 

Subsequent studies have extended sensor networks to has included the nutrient and pH sensing, 

which has enabled more comprehensive soil assessment [8]. Although these approaches have 

enhanced situational awareness, they have continued to depend on the descriptive analytics. 

Predictive modeling has remained minimal, and recommendations have often been derived 

from generalized agronomic guidelines rather than localized intelligence. 

Image-based crop disease detection has emerged as a parallel research direction. Traditional 

methods have employed hand-crafted features such as color histograms, texture descriptors, 

and shape metrics, which have been classified using support vector machines or k-nearest 

neighbors [9]. While these techniques have achieved moderate success under the controlled 

conditions, its performance has degraded in the real-field environments due to the sensitivity 

to lighting, occlusion, and background clutter. 

With the adoption of deep learning, convolutional neural networks have been applied to 

agricultural image analysis, achieving significant gains in disease classification accuracy [10]. 

Pre-trained architectures such as AlexNet, VGG, and ResNet have been fine-tuned on the crop 

disease datasets, which has improved robustness to visual variability. However, most of the of 
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these studies have focused exclusively on the image data and it fails to incorporated 

environmental context. 

Several researchers have explored the use of deep learning for a yield prediction and weather 

impact analysis using time-series sensor data [11]. Recurrent and hybrid deep models have are 

captured temporal dependencies in climate variables, which has improved forecasting 

accuracy. Nevertheless, these models have often operated independently of visual plant health 

indicators. 

Recent works have attempted to integrate IoT data with the machine learning for a decision 

support in agriculture [12]. These systems have combined sensor readings with the simple 

predictive models to generate irrigation or fertilization schedules. However, limited attention 

has been given to multi-modal data fusion that has jointly considered soil, climate, and crop 

imagery. 

Cloud-based the agricultural analytics platforms have also been proposed, which have 

leveraged centralized processing for a large-scale data analysis [13]. While these platforms 

have supported complex computations, they have introduced latency and have depended 

heavily on the stable internet connectivity. Such dependence has restricted usability in remote 

farming regions.  

More recent studies have investigated edge computing for a smart farming application [14]. By 

processing data closer to the field, these approaches have reduced latency and bandwidth usage. 

However, most of the edge-based solutions have implemented lightweight models with the 

limited predictive depth. Finally, combined frameworks that have combined disease detection 

with the nutrient management have remained scarce [15]. Existing studies have tended to 

address these aspects separately, which has limited its practical impact.  

Proposed Method  

The proposed method has implemented an combined the agricultural intelligence framework 

that has combined heterogeneous IoT sensing with the deep learning–based visual analytics 

and decision support. The system architecture has followed a sequential yet tightly coupled 

workflow, beginning with the field-level data acquisition and concluding with the adaptive 

recommendations. Multi-source data that have been collected from soil, climate, and crop 

imagery have been preprocessed, synchronized, and fused to form a unified representation of 

field conditions. A dual-stream convolutional neural network has analyzed crop images for a 
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disease symptoms and nutrient deficiencies, while sensor-derived parameters have provided 

contextual environmental constraints. The fused inference has enabled predictive and 

prescriptive outputs that have supported timely, field-specific actions. This approach has 

emphasized local processing to reduce latency and has ensured robustness under the limited 

connectivity. 

 

Figure 1: Proposed Framework 

Pseudocode  

Input: Sensor_Data S, Image_Data I 

Output: Adaptive_Recommendation R 

Begin 

    Initialize sensor network and imaging modules 

    While field monitoring is active do 

        Acquire S(t) from soil and climate sensors 

        Capture I(t) from field cameras 

        Preprocess S(t) using normalization and noise filtering 

        Preprocess I(t) using resizing, augmentation, and segmentation 
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        Extract visual features Fv using CNN_disease and CNN_nutrient 

        Aggregate sensor features Fs from S(t) 

        Fuse features F = Fusion(Fv, Fs) 

        Infer crop health state H from F 

        Generate recommendation R based on the H and agronomic rules 

        Output R to decision-support system 

    End While 

End 

1. Data Acquisition 

The data acquisition layer continuously monitors the agricultural field using a heterogeneous 

IoT sensor network. Soil moisture, nutrient concentration, pH, ambient temperature, and 

humidity sensors operate alongside visual imaging units. This combination ensures that both 

subsurface and above-ground conditions are are captured in the real time. The synchronized 

collection of environmental and visual data has enabled a contextual interpretation of crop 

health rather than isolated observation. Table 1 presents a structure of the acquired sensor data 

that support subsequent analytics. 

Table 1. IoT Sensor Data Structure 

Sensor Type Parameter Measured Unit Sampling Interval 

Soil Sensor Moisture % 10 min 

Nutrient Sensor NPK Levels mg/kg 30 min 

pH Sensor Soil pH pH scale 30 min 

Climate Sensor Temperature °C 5 min 

Climate Sensor Humidity % 5 min 

As shown in Table 1, the diversity of sensing modalities allows the system to capture fine-

grained field variability. The continuous stream has supported near-real-time assessment and 

has reduced uncertainty in downstream predictions. 
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The relationship between raw sensor measurements and normalized values is expressed as: 

 

 

where denotes the raw sensor reading of type at time , represents the mean, and 

represents the standard deviation of the sensor data. This normalization ensures numerical 

stability and comparability across modalities. 

2. Data Preprocessing and Synchronization 

Sensor readings often contain noise due to the environmental interference, while images has 

exhibited the variability caused by lighting and occlusion. Noise filtering, missing-value 

interpolation, and normalization are applied to the sensor streams. Image data undergo resizing, 

contrast normalization, and segmentation that isolates the leaf or fruit region. Temporal 

synchronization thus gets aligned with the sensor and image data collected at different sampling 

rates. Table 2 has shown a synchronized multi-modal dataset snapshot. 

Table 2. Synchronized Multi-Modal Dataset 

Timestamp 

Soil 

Moisture 

(%) 

Temperature 

(°C) 

Humidity 

(%) 
Image ID 

t₁ 24.5 31.2 68 

 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2026-536


Musik in Bayern 
ISSN: 0937-583x Volume 91, Issue 1 (Jan -2026)  
https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2026-536 

 

Page | 57  
 

t₂ 23.9 31.5 70 

 

Table 2 has shown how environmental readings and images are temporally aligned, which has 

supported coherent inference. Without synchronization, the visual symptoms might be 

incorrectly associated with the unrelated soil conditions. 

The synchronization process is mathematically represented as: 

 

where denotes the synchronized data instance, and represents the allowable temporal 

tolerance window. 

3. Visual Feature Extraction Using Dual-Stream CNN 

The visual analytics module employs a dual-stream CNN architecture. One stream focuses on 

the disease-related texture and lesion patterns, while the second stream emphasizes color and 

morphological cues associated with the nutrient deficiencies. The use of pre-trained backbones 

has improved feature generalization under the varying field conditions. The parallel streams 

generate complementary representations that are later fused. Table 3 has shown the feature 

outputs from the dual streams. 

Table 3. CNN Feature Representation 

Stream Type Feature Dimension Target Pattern 

Disease Stream 2048 Spots, lesions, mildew 

Nutrient Stream 1024 Chlorosis, discoloration 
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As presented in the Table 3, the separation of feature learning has enhanced discriminative 

capability. The disease stream captures high-level spatial patterns, while the nutrient stream 

emphasizes color gradients and texture uniformity. 

The convolutional feature extraction is expressed as: 

 

where  denotes the feature map at layer ,  represents convolutional weights,  denotes 

bias, and  represents the activation function. 

4. Sensor Feature Aggregation and Context Modeling 

Sensor-derived parameters provide contextual constraints that influence crop health. 

Aggregated features has included the statistical descriptors such as mean moisture trend, 

nutrient deviation, and temperature stress index. These features contextualize visual symptoms 

and reduce false diagnosis. Table 4 presents a aggregated sensor feature vector. 

Table 4. Aggregated Sensor Feature Vector 

Feature Name Description Value 

Moisture Trend 24-hour moisture change −1.8 

Nutrient Deviation Difference from optimal NPK +12 

Thermal Stress Index Heat exposure indicator 0.63 

Table 4 indicates how environmental stress factors are quantified numerically. These 

descriptors provide interpretability and support adaptive decision logic. 

The aggregation process is mathematically represented as: 

 

where denotes the aggregated sensor feature vector, represents feature extraction 

functions, and denotes the aggregation window. 

5. Multi-Modal Feature Fusion and Inference 

The fusion stage has combined visual and sensor features to generate a holistic crop health 

representation. Decision-level fusion combines the outputs of the CNN classifier and sensor-
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based predictors. This combination has enhanced robustness by balancing visual cues with the 

environmental context. Table 5 provides an example of fused inference outcomes. 

Table 5. Fused Inference Results 

Visual Diagnosis Sensor Stress Level Final Inference 

Mild Leaf Spot Moderate Early Disease Onset 

Chlorosis High Nutrient Gap Nitrogen Deficiency 

As shown in Table 5, fusion resolves ambiguities that would arise if each modality were 

processed independently. 

The fusion function is expressed as: 

 

 

where denotes the final health inference, and represent visual and sensor inference 

functions, and controls the contribution balance. 

6. Decision Support and Adaptive Recommendation Generation 

The decision-support module translates inference results into actionable recommendations. 

Irrigation and fertilization schedules adapt dynamically to the inferred crop state and growth 

stage. This adaptive logic avoids over-application of resources and has supported sustainability. 

Table 6 presents a recommendation output. 

Table 6. Adaptive Recommendation Output 

Crop Condition Recommended Action Priority 

Early Disease Stage Targeted Fungicide Spray High 

Nitrogen Deficiency Controlled N Application Medium 

Table 6 has shown how system outputs align agronomic actions with the diagnosed conditions. 

The recommendation optimization is modeled as: 
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where  denotes the optimal recommendation,  represents resource cost,  

represents loss due to the mismatch between crop health  and action , and  is a weighting 

factor. 

7. Edge-Level Deployment and Feedback Loop 

The final stage executes analytics at the edge, the adoption of a low-latency responses and 

resilience to connectivity limitations. Feedback from applied recommendations updates the 

model inputs, the adoption of a continuous learning. Table 7 has shown feedback-driven 

performance tracking. 

Table 7. Feedback and Performance Monitoring 

Cycle Action Applied Observed Improvement (%) 

1 Irrigation 6.2 

2 Nutrient Dose 8.5 

Table 7 has shown the adaptive refinement supported by closed-loop feedback. 

The feedback update is formalized as: 

 

where  denotes model parameters,  denotes the learning rate, and  denotes the loss 

function. 

Results and Discussion 

The experimental evaluation is conducted using a hybrid simulation and real-data 

experimentation approach. The IoT sensing layer is simulated using MATLAB R2023a to 

model heterogeneous sensor behavior, data acquisition intervals, and noise characteristics 

under the varying environmental conditions. The deep learning components are implemented 

using Python with the TensorFlow and Keras libraries, which support reproducible training and 

evaluation of convolutional neural networks. Image preprocessing and augmentation 

operations are executed using OpenCV. The experiments are executed on the a workstation 

equipped with the an Intel Core i9 processor, 64 GB RAM, which has supported efficient model 

training and inference. Edge-level inference latency is evaluated by deploying the trained 

model on the a Raspberry Pi 4 Model B, which reflects practical on-field constraints.  
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Experimental Setup and Parameters 

The system parameters are configured to reflect the realistic agricultural monitoring conditions. 

Table 8 has shown the experimental setup and key parameter values that are used throughout 

the evaluation. 

Table 8. Experimental Setup and Parameter Configuration 

Parameter Description Value 

Number of Sensor Nodes Soil and climate sensing units 30 

Image Resolution Field image input size 224 × 224 

CNN Backbone Pre-trained feature extractor ResNet50 

Learning Rate Optimizer step size 0.0001 

Batch Size Images per training iteration 32 

Training Epochs Total learning cycles 100 

Fusion Weight (α) Visual–sensor contribution factor 0.6 

Edge Device On-field inference platform Raspberry Pi 4 

As shown in Table 8, the configuration balances model accuracy and computational efficiency, 

which is essential for a real-time agricultural deployment. 

Dataset Description 

The evaluation uses a combination of publicly available agricultural image datasets from the 

Kaggle repository [16] with the various crops that Version 12 (62.89 MB) crop_images jute 

maize rice sugarcane wheat. Crop images has included the healthy and diseased samples are 

captured under the diverse lighting and background conditions. Sensor data has represented 

soil moisture, nutrient levels, and climatic variations that is synchronized with the image 

timestamps. Table 9 presents the dataset composition used in the experiments. 

Table 9. Dataset Description 

Dataset Component Description Samples 

Crop Images Healthy and diseased leaf and fruit images 18,000 
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Disease Classes Fungal, bacterial, pest-related 6 

Nutrient Deficiency N, P, K deficiencies 3 

Sensor Records Soil and climate readings 120,000 

Training–Testing Split Data division ratio 70:30 

Table 9 indicates that the dataset captures both visual diversity and environmental variability, 

which has supported comprehensive performance evaluation. 

Existing Methods for a Comparison 

For comparative analysis, three existing methods are selected from prior studies. The first 

method employs an IoT-based threshold-driven irrigation and monitoring system that focuses 

on the real-time sensing without predictive analytics. The second method uses a CNN-based 

crop disease classifier that relies solely on the image data. The third method has combined 

cloud-based machine learning for a agricultural decision support but depends on the a 

centralized processing and a static recommendations. These methods provide a meaningful 

baseline for a assessing the effectiveness of the proposed combined framework. 

The comparative evaluation considers three existing methods that are represented dominant 

approaches in the smart agriculture.  

 Threshold-Based IoT Monitoring relies on the real-time sensor readings and fixed 

thresholds for a irrigation and alerts.  

 Image-Only CNN Classifier focuses on the crop disease detection using visual data 

without environmental context.  

 Cloud-Based ML Decision System has combined sensor data with the machine 

learning but depends on the a centralized cloud processing and a static recommendation 

rule.  

Table 10. Accuracy Comparison over Epochs 

Epoch Threshold-Based 

IoT Monitoring 

Image-Only 

CNN Classifier 

Cloud-Based ML 

Decision System 

Proposed 

Method 

0 65.4 68.1 70.2 72.6 
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20 70.3 75.6 78.4 84.9 

40 73.8 80.2 82.7 89.6 

60 76.1 83.9 85.3 92.3 

80 77.5 85.1 86.8 94.1 

100 78.2 86.0 87.5 95.0 

Table 11. Precision Comparison over Epochs 

Epoch Threshold-Based 

IoT Monitoring 

Image-Only 

CNN Classifier 

Cloud-Based ML 

Decision System 

Proposed 

Method 

0 62.8 66.9 69.4 71.8 

20 68.5 73.4 76.2 82.6 

40 71.9 78.6 80.5 87.4 

60 74.3 82.1 83.6 90.2 

80 75.6 83.8 85.1 92.0 

100 76.4 84.5 85.9 93.1 

Table 12. Recall Comparison over Epochs 

Epoch Threshold-Based 

IoT Monitoring 

Image-Only 

CNN Classifier 

Cloud-Based ML 

Decision System 

Proposed 

Method 

0 60.7 65.3 68.6 70.9 

20 67.2 72.8 75.4 83.1 

40 70.6 78.1 80.2 88.0 

60 73.0 81.6 82.9 91.4 

80 74.4 83.2 84.3 93.2 

100 75.1 84.0 85.0 94.0 

Table 13. F1-Score Comparison over Epochs 

https://musikinbayern.com/
https://doi.org/10.15463/gfbm-mib-2026-536


Musik in Bayern 
ISSN: 0937-583x Volume 91, Issue 1 (Jan -2026)  
https://musikinbayern.com               DOI https://doi.org/10.15463/gfbm-mib-2026-536 

 

Page | 64  
 

Epoch Threshold-Based 

IoT Monitoring 

Image-Only 

CNN Classifier 

Cloud-Based ML 

Decision System 

Proposed 

Method 

0 61.7 66.1 69.0 72.2 

20 68.0 73.1 75.8 83.5 

40 71.2 78.3 80.3 88.5 

60 73.6 81.8 83.2 90.8 

80 74.9 83.5 84.7 92.6 

100 75.7 84.2 85.4 93.5 

Table 14. Inference Latency Comparison (ms) 

Epoch Threshold-Based 

IoT Monitoring 

Image-Only 

CNN Classifier 

Cloud-Based ML 

Decision System 

Proposed 

Method 

0 48 92 210 65 

20 47 90 205 63 

40 46 88 198 61 

60 46 87 195 59 

80 45 86 190 58 

100 45 85 188 56 

The numerical results in Tables 10–14 clearly indicate that the proposed method consistently 

outperforms the existing approaches across all evaluated metrics. As shown in Table 10, the 

proposed method has achieved a an accuracy of 95.0% at 100 epochs, which exceeds the Cloud-

Based ML Decision System by 7.5%, the Image-Only CNN Classifier by 9.0%, and the 

Threshold-Based IoT Monitoring by 16.8%. Precision and recall trends in Tables 11 and 12 

demonstrate similar improvements, where the proposed method attains 93.1% precision and 

94.0% recall at the final epoch. These gains indicate reliable positive predictions and effective 

early detection capability. 

The F1-score results in Table 13 confirm balanced performance, with the proposed method 

reaching 93.5%, compared to 85.4% for a the cloud-based approach. This improvement reflects 
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the advantage of multi-modal data fusion that has combined sensor context with the visual 

inference. Table 14 has shown that the proposed method maintains low inference latency at the 

edge, achieving 56 ms at 100 epochs, which is significantly lower than the cloud-based system.  

Conclusion 

This study has shown that the combination of heterogeneous IoT sensing with the deep 

learning–based visual analytics significantly has enhanced the agricultural decision support. 

The proposed framework effectively combines soil, climate, and crop imagery within a unified 

predictive model, which has enabled an accurate and timely identification of crop diseases and 

nutrient deficiencies. Quantitative evaluation confirms that the system has achieved a superior 

accuracy, precision, recall, and F1-score compared with the threshold-based, image-only, and 

cloud-centric methods. The consistent performance gains across training epochs indicate stable 

learning behavior and strong generalization. In addition, the edge-level deployment has 

allowed the low inference latency, which is critical for a practical agricultural environment 

where connectivity constraints are common. The adaptive recommendation mechanism thus 

gets aligned with the resource application conditions, thereby it has supported the sustainable 

water and fertilizer management.  
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